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LIST OF SYMBOLS 

Geometrical Quantities 

r - the space vector in the rectangular coordinates 

Xi, x2 and x3 • the components of the space vector in the 
rectangular coordinates 

x . - the coordinate along the electron flow 

t - the time variable 

z - cylindrical coordinate along with the electron flow 

r - the radial distance from the z axis 

R - the radial distance in the spherical coordinates which takes the 
center of the anode orifice as the origin 

6 - the polar angle of the spherical coordinates 

$ - the azimuthal angle of the spherical coordinates 

5 - an incremental polar angle from 6 

Cl  - the solid angle in the unprimed coordinates 

ft'   the solid angle in the primed coordinates 

li - the length of the cylinder to the left of the anode plane 

12 - the length of the cylinder to the right of the anode plane 

D - the cathode-anode spacing of the diode 

9i - the polar angle that the expanded beam at the back wall (due 
to electron lens effect alone) would subtend at the origin 

62 - the polar angle that the expanded beam at the back wall (due 
to space charge effect alone) would subtend at the origin 

Y - r/r0, the ratio of the radius of the electron beam at the z plane 
and that of the anode orifice. 

Electrical Quantities 

V - the potential in volts 

p - the charge density in the electron flow 

J - the electric current density 
—• 
F  the force per unit mass of electrons 

It   the number density of the electrons at a point in the flow 
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Ei • the electric field at the left end of the cylinder 

E2 - the electric field at the right end of the cylinder 

Ep - the radial components of the electrical fieid across the 
mantel surface 

j^ - the anode current density in ^la/cm 

Io • the total current through the anode orifice 

Ip - the primary electron current to the inner wall of the anode orifice 

Is - the secondary electron current from the inner wall of the anode orifice 

is - the secondary electron current per unit area of plane surface 

j(0,6) - the current between the concentric cones with the apex angles 28 
and 2(6 + 6) per unit area of the anode orifice 

J(9,6) - the current density at the Z plane between the polar angles 6 and 
(6 + 6) 

J(8) - the current density at the Z-plane with a polar angle 8 

Jg(8) - the current density at the Z plane with a polar angle G due to 
secondary electrons alone 

W - the work function of the emission surface 

T - the cathode temperature 

Rs - the ratio of the space charge current to the current emission of the 
cathode 

Dynamic Variables 

v0 - the initial velocity of the electrons at the cathode 

v  - the velocity of the electrons at point x 

c* • the velocity vector of an electron in the rectangular coordinates 

Ci, c2 and c3 the velocity components with respect to the rectangular 
coordinates 

c - the r-component velocity of the electron 

c_ - the 7.-component velocity of the electron 

u - the vector of the peculiar velocity of an electron 

c  the mean velocity of the electrons at a point 
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v - the mean velocity along the electron flow 

>-pa - the summati.onal invariants 

T-p - the mean transit time 

Tp  the relaxation time 

X   the mean free path 

8 - the electron temperature generally a tensor at a point in 
the electron flow 

6ii ©2. 89 - the diagonal components of the electron temperature tensor 

©z - the z-component of the electron temperature 

©r - the r component of the electron temperature 

f, op - the velocity distribution functions of the electrons at a 
point in the electron flow 

Constants 

m - the mass of an electron (9.10 (10)~  gm.) 

e - the charge of an electron (4.80 (10)-  e.s.u.) 

k - a Boltzmann constant (1.38 (10)~  erg/degree) 

r0 - the radius of the anode orifice (0.00675 inch) 

Z - the coordinate of the back wall of the anode chamber, (Z = 1.200 inch) 

tyy - the thickness of the anode wall (r0/3) 

Q - the proportional constant in the Child-Langmuir space-charge law 

^ . mu  ( the ratio of the mean energy and the internal energy of the 
2k0   electrons at a point in the electron fl r ow 

e - the normal-energy constant of an emission surface 

A, B, fi, L and M - constants in the equations 

h, h' and H - the proportionality constants in the equations of secondary 
electron emission. 
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1.  INTRODUCTION 

In the following pages, the electron flow in a diodic arrangement 

will be treated from a general point of view. To elucidate an essential 

feature of the physical behavior of the diode, a different viewpoint 

will be taken at the very beginning. In contrast to the usual represen- 

tation where, at a constant cathode temperature, the anode potential is 

varied and the anode current is taken, we shall consider here the case 

where the anode potential is kept constant but the cathode temperature 

is raised. Thus, if a constant positive anode potential is applied and 

the cathode temperature is gradually raised, the current in the diode 

will first ascend quickly and then reach saturation with further in- 

crease of the cathode temperature This fact leads to the conclusion 

that many of the emitted electrons are forced to return to the cathode 

when the current reaches the saturation. The interpretation of this 

behavior is that in spite of the existence of a positive potential on 

the anode, the high accumulation of space charge in front of the cathode 

may still depress the potential there so low that a considerable amount 

of emitted electrons will return to ttie cathode. 

In the process of developing an adequate quantitative description 

of the physical behavior of the diode, two phases can be distinguished 

in the papers of the early workers in this field which successfully 

explain several features of the diode. The problem was first studied1 

under the assumption that all the electrons leave the cathode with the 

same initial velocity and are accelerated in exactly the same manner in 

the diode. In other words, the electron velocity at any point in tne 

diode is considered as being single-valued Then the problem may be 

attacked only from Poisson's equation, the energy equation and the re- 

lation between current, charge and velocity, namely, 

d!v . _ 47lp (1) 

nx2 ax 

2 mvx2 " 2 mv°2 = eV (2) 

J = pvx (3) 

where x is the distance from the cathode measured perpendicular to the 

plane of the cathode, v is the velocity of the electron at a point x, 

v0 is the initial velocity of the electron at the cathode, V is the 
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potential at any point determined with respect to the cathode, e and m 
are the charge and mass of the electron, p and J are the charge and 
current densities. The solution thus obtained is certainly not general 
and, at best, may be applicable only to the case where all the electrons 
at  any one  point  are moving in  the same direction. 

The essential work in the second phase was done by Epstein2, Fry3 

and Langmuir4. Instead of assuming the electron velocity to be single- 

valued in the diode, they considered a velocity distribution of the 
emitted electrons at the cathode surface. The usual representation of 
the potential distribution in a diode is given in Fig. 1. The potential 

depression in front of the cathode is particularly emphasized in this 
figure. If the potential minimum is found, one can determine precisely 
the trajectories of all electrons aTter they are emitted from the 
cathode. The interpretation was that those electrons with initial 
kinetic energy higher than the potential minimum would come through to 
the anode and those with less initial kinetic energy would return to the 

cathode. It can be said to the merit of Epstein, that he brought up two 
questions: a: What distribution function one must use to describe the 
current emission in terms of the initial velocity of the emitted elec- 
trons; b: Where one must consider the problem of encounters between 
electrons and electrons. Unfortunately, he did not attempt to solve the 
electron flow problem taking encounters into consideration, but rather 
assumed that the electrons are unaffected by each other throughout the 
electron flow in the diode. On the other hand, he was forced to treat 
the electron gas between the two electrodes as being in *rn equilibrium 
state which would, of course, demand that an energy exchange take place 
between   the   particles   of which  this  gas   is   composed. 

To form a description of the gas under consideration which would 
come as close as possible to the actual behavior of the electrons in the 

diodic arrangement, one should consider all the effects expected to 
contribute essentially to the overall behavior of the electron gas under 
the conditions in question. Three microscopic phenomena will be con- 
sidered as the decisive factors in the determination of the macroscopic 
behavior  of  the  electron  gas. 

First, one has to consider the change of particle density with 
respect to the space coordinates due to the accelerated motion of the 
particles  between  the   cathode  and  the  anode.     Examination  of  the  parti- 

3 
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FIGURE 1   CHARACTERISTIC FORM OF THE POTENTIAL DISTRIBUTION 
IN A PARALLEL PLANE DIODE 
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FIGURE 2   ASSOCIATED TRANSMISSION COEFFICIENT 
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cles at any fixed location in the flow, shows ear1 jf them moving in a 
different direction with a different velocity. The uiual method is to 
decompose the velocity of each particle into two vectors, one being the 
mean velocity which is the same for all the particles at that location, 
and the other being the spread velocity of that particular particle with 
respect to the mean velocity. Thus the particles at that location in 

the flow will have a mean velocity on which the velocity spread is 
superimposed. 

Next, one has to consider the external forces acting on the parti- 
cles and the change of particle density with respect to their three 
velocity components. These three velocity components together with 
their corresponding space coordinates constitute in the usual way the 
phase space (u-space) for that gas. The external forces acting on the 
particles are those due to sources outside the location of the {articles 
in  consideration. 

Finally, in case of an electron gas, the internal forces acting on 
the particles in question must be also considered. These interanl 

forces are produced by the interactions between the particles which are 
very close together. From a statistical point of view, it is believed 
that the effect of these interactions can best be described by a concept 
of encounters between the different particles. Since the treatment of 
that problem in this paper includes the effect of the internal forces 

on the process of encounters, the precise meaning of the potential5 

will   be  one   from which only   the  external   forces   are  derivable. 
The best tool to describe such a gas at any point within the flow 

is   the Boltzmann   equation: 

a.f 

-5- 

|f . -z . vTf - F «  vCf + ?fi± (4) 
at r c      3t 

where the velocity distribution function f is the dependent variable, 

but F, c, r and t are independent variables.  It is clear that §-* is the 

rate of change in time of ,the velocity distribution function, whereas F 

is the external force per unit mass, Vr and Vc denote the eel operators 

with respect to space coordinates and velocity coordinates respectively. 

The quantity -— written in Eq. (4) is the rate of change of the veloc- 
ot 

ity distribution function due to the encounters of the particles, and 
thereby   is   the   result   of  all   particle   encounters   at   the   location   in 
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consideration.     Hence  the  expression  -~ is  an  integral   involving  the 

unknown function f (c, r, t) of the problem. So Boltzmann's equation is 
an integro-differential equation which indicates that the change of the 
velocity distribution function at any point within the flow comes from 
three sources that are precisely the three factors listed above. Since 
the first term of the right hand side of Eq. (4) points out the non- 
uniforrnity of the flow of the gas under consideration, the methods 
adopted in this treatise will be similar to those developed by workers 

dealing with non-uniform gases. Particularly, the nomenclature will 
follow the one given by Chapman and Cowling6. 

It will  be  shown that  the electron  flow between the  c .thode and the 
anode   car.  be   completely  described with   four macroscopic   quantities. 
These   four   quantities   are: 

1. External  force   field  F 
2. Electron  number  density  n 
3       Mean  velocity  c 
4. Electron temperature © 

The temperature of a gas in general may be expressed as a second-order 
tensor, which is an array of nine ordered components. In this paper, 
however, the electron temperature consists of only thr^e mutually 

perpendicular components, 8i, 9a and 03, which are calculated from the 
velocity distribution of electrons in the rectilinear flow. In a molecu- 
lar gas where these three components are always equal, the temperature 
may be   further   degenerated  into one   component,   thus   a   scalar. 

In a later part of this report, two examples will be given of how 
the presented theory can be applied to certain flow problems. In 
particular two cases will be distinguished: the one in which the three 
temperature components, 6], 82 and 03, are equal to earh nfhor but vary 

only with the location in the flow, which will be properly called the 
"isotropic flow"; the other one, in which the temperature component in 
the direction of flow, Qlt will vary with the location in the flow; but 
the other two components perpendicular to the flow, 02 

and 0s, will be 
constant throughout the flow, hence different from 0 . Accordingly this 
case will  be  termed the   "anisotropic   flow". 

In  this  treatise,   the effect of magnetic   fields  will  be  neglected 
This   approach  will   finally  yield  exact  solutions   for  the  steady  state. 

i' 
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The solutions will degenerate to known expressions obtained from the 
single-valued velocity theory if the effect of encounters is neglected. 
All equations, except when explicitly noted otherwise, are written in 
eleci.iusLai.ic units,   centimeters,   grams,   and seconds. 
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II.  THE PROBLEM AND THE METHOD OF SOLUTION 

In the preceding section, it was pointed out that an adequate tool 

to describe the behavior of the electron gas in the condition of diodic 

flow would be Boltzmann's integro-differential Eq. (4). This would 

account for mutual interaction of the particles by the way of encounters. 

From a practical point of view, the condition of the flow after it has 

attained its steady state should deserve first attention rather than the 

very general case of studying the transients of this flow. This enables 

one to make a considerable simplification of the very complex task of 

solving generally Eq. (4), since it becomes unnecessary to account for a 

change in time of the VDr at a particular point in consideration That 

precisely means that 

9£ 
9t 

= 0 (5) 

if only the steady state is considered. Since from now on only the 

steady-state case is considered, the problem should be to solve the 

steady-state Boltzmann equation 

V_f + F • V f - ^sL  = 0 r       c   3t 
(6) 

for the VDF at any point within the flow. That precisely means, to find 

uniquely an 

f(c, r, f0(r0)) 

which would satisfy Eq. (6), where, because of the character of this 
particular equation -- being linear and of the first order -- one has a 
free choice of the distribution function at a particular point in the 
flow.     This boundary  condition was   formerly introduced as   f0(f0). 

It is well known to workers in this fieid that an attempt to solve 
generally the Boltzmann equation leads to insurmountable mathematical 
difficulties, even in the simplified form of Eq. (6), where only the 
steady-state case is considered. In spite of this fact, several methods 
were devised  to solve  this  equation   for some particular cases. 

One of the early simplifying restrictions imposed upon the problem 

was the condition of uniformity and steadiness of the gas under consid- 
eration.      This   means,   a.)   no  external   force,   b.)   zero  mean   velocity. 

*VDF,   hecebft.er stands   for  velocity distribution   function. 

9 
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The solution  for  f in  this  case  is,   of course,   the  v<sll  known Maxwellian 

VDF. 

Recently, Kihara- studied the case where the gas under considera- 

tion was composed of charged and uncharged particles. In the case where 

the number of uncharged particles is much larger than the number of 

charged particles, the collisions among charged particles can be con- 

sidered negligible in comparison with the collisions of charged with 

uncharged particles. Solutions are obtained with a further restriction, 

namely, that the drift velocity of the charged particles is small in 

comparison with their thermal velocity. Obviously, the restriction 

pointed out above cannot be imposed upon the case considered in this 

paper, that of the flow of an electron gas in a high vacuum diode. 

Unfortunately,   there   is  at   present no  precise mathematical   expression   to 

describe   adequately   the   phenomenon   of  encounters   between   electrons. 
ap{ 

Even with  an   approximate  expression   for the   term,   -——,   symbolizing the 
at 

encounters in the Boitzmann Eq. (6), one still meets insurmountable 

mathematical difficulties to find a solution for f. 

No attempt will be made in this paper to solve for the VDF under 

particular restrictions imposed upon the problem. The method suggested 

here will be to define a class of VDF's by stating properly the physical 

properties of the flow and then selecting a representative function of 

this class of VDF's which may contain the "true function;l as one of its 

members. It will be seen that the so selected VDF will approach any 

function of that class within the third moment. 

Tn the course of describing the physical properties of the flow and 

defining in that way the class of VDF's, any member of which will serve 

as an approximation to the "true function" up to the third moment, one 

links the microscopical quantities defining the VDF with macroscopic 

quantities accessible to measurements, as was mentioned in the precedj.n.g 

section. 

Let c be the linear velocity in coordinates fixed with respect to 

an observer in the laboratory. Then the electron number density in the 

neighborhood of a point r in the flow is given by 

n(r) = J f (c,r) dc (j) 

where,   here   and  in   the   future,   a notation  /   ••*   da   indicates   an  integra- 
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tion carried out over all components of the vector quantity a in the 

entire a •space* 

In accordance with the usual definition of the mean value of an 

arbitrary function with respect to a distribution function f, the mean 

value c of the function c, the velocity of the electrons in the flow, 

will be defined as 

Z ' I f  c f (c,r) dc (8) 

Eqs. (7) and (8) will impose some restrictions as to the free choice of 

an arbitrary VDF, since any suggested VDF must be consistent with the 

conditions defined in Eqs. (7) and (8). Since these equations are the 

definitions of the zero and the first moments o* the velocity distribu- 

tion function f, at that state of the development, it can be said that 

such a function f satisfying (6), (7) and (8) would approximate the 

"true function" up to the first moment. 

In a later development it will be necessary to look at the velocity 

distribution of bhe electrons in the flow from the viewpoint of an 

observer moving with the mean velocity c along with the electron flow. 

Let u be the linear velocity in coordinates fixed with respect to this 

observer. Then the electron number density in the neighborhood of a 

point r in the flow is given according to (7) 

n (V) - / <p (u,r) du (9) 

where cp(u,r) denotes the VDF as observed by the moving observer, and u, 

the peculiar velocity of the electrons in this frau.e of reference, is 

defined by 

u = c - c (10) 

Having made clear the definition of the zero and first moments, we 

now proceed to consider the second moment of the VDF. By the second 
moment  of  the  VDF is  meant   the   following quantity: 

/   u  ii  <p   (u,r)   du 

where the symbol uu has been used to stress the fact that any two 
components   of   the   peculiar   velocity  u  can   be   combined   to   form  a  second 

-10 
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order  term with  respect   to  their  velocity.     Hence  uu can be   considered 
as  a   tensor with  the  nine  ordered  components: 

/Ui   Ui "i    U2 Uj,   u3\ 

u?   Ui        u2 u2       u2   u3 I 

\U3   Ui        Us   u2        u3   u3/ 

This  makes   it  olvious   that   the  second  moment  has   the  properties   of  a 
tensor,   the   components   of which,   multiplied  by  a   constant   factor  J&-, 

,   .. kn 
conveniently define a new  tensor 

0   (?)  •  JL /  u u <J>  (u,r)  du (u) 

which   is   generally  known  as   the   temperature   tensor   in   the   neighborhood 
of  the  point   r  in   the   flow. 

Since our aim is to obtain results from the presented theory which 
are applicable to practical situations, structures with rectilinear 
electron flow (as concentric, coaxial, parallel plane structures) will 

certainly receive first attention. Restricting oneself to the general 
class of structures with rectilinear flow, a convenient choice of the 
coordinates can be made by placing one axis parallel and the other two 
axes perpendicular to the flow. The axis parallel to the flow in the 
following will be labeled with index 1, the other two, 2 and 3. The 
necessary and sufficient condition to characterize rectilinear flow is to 
say that the net transport of matter is carried out along one and only 
one fixed coordinate. Explicitly, this means that the mean velocity, c, 
of the flow is parallel to the external force field F in the flow. This 

immediately implies a simplification of Eq. (8), which defines the mean 
velocity in all different directions of the flow. With the particular 
choice  of  the   coordinate  system  as  described  above,   it   follows   that 

/ U1T(U, r)  du:   =0, i   =2,3 Q2) 

The choice of this particular geometry, with its symmetry proper- 

ties expressed through Eq. (12), has a most important bearing on the 

structure of the temperature tensor 0 defined by Eq. (11). A glimpse of 

the tensor array for the u^u, terms indicates immediately that all the 

-11 
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non-diagonal terms will vanish and the temperature tensor 0 reduces to 

/0i    0 

0 -   f o        e2        o   I us) 
o        o V 

Since each of the diagonal terms represents the mean square of a veloc- 

ity component, the electron temperature is merely a measure of the mean 

kinetic energy with respect to an observer moving with the mean velocity 

c along with the flow. This definition of temperature will be, of 

course, in agreement with that in thermodynamics when the particles 

under consideration reach the state of equilibrium. 

Having no." properly interpreted the physical signi f icance of 

the second moment, we are ready to turn our attention to the third 

moment of the VDF In accordance with the usual definition, one can 

write for M3, the third moment: 

M3 = J   u  tp (u, r) du 

M3 can be interpreted as the rate of net flow of the kinetic energy with 

respect to an observer moving with the mean velocity c along with the 

electron flow. It will be seen later in the development, but also may 

be worth noting here that in practical situations the average velocity 

with respect to such a moving observer is much smaller than the mean 

velocity c of the electron flow. The net flow of the kinetic energy 

with respect to such a moving observer is consequently much smaller than 

the flow of the kinetic energy with the mean velocity c.  That is 

k6  < < m c 
2      2 

For this reason, the third moment M3 can be considered to be zero, thus: 

J u <P (u,r) du = 0 (14) 

It may be noted that every even VDF would automatically satisfy the 
condition expressed in Eq. (14). However, Eq. (14) does not necessarily 
restrict VDF's to be even functions of u. This minor restriction 
imposed upon the problem does not prevent us from including a vast 
number of functions in the class of possible VDF's and just enables us 
to  procure   solutions   for   the  present  problem. 

• 



Since all the statements so far regarding the physical properties 

of the electron flow have been so general that they can be considered 

valid whether encounters or'no encounters between the particles take 

place, we must now turn our attention to the more specific knowledge 

one can obtain if one considers that even if encounters have a major 

role in the physics of the flow, one is able to select certain quanti- 

ties which will not change before and after the encounters. Although no 

detailed picture of the process of encounters may ever be obtained, it 

is at once evident that, for example, the number of particles engaged in 

mutual encounters will remain constant before and after their inter- 

actions. Similarly, it is clear that the total momentum and energy of 

the participating particles will remain invariant during this process. 

Those quantities remaining unchanged during the complex process of 

encounters are generally known as summational invariants. Their invari- 

ability gives some additional bits of information to a sufficient 

description of the physical properties of the flow. 

To state the three previously indicated conditions in mathematical 
9 f 

terms one has to remember that the symbol •—-  in the Boltzmann Eq. (6) 
Ot 

denotes the change of the VDF due to the particle encounters.  Thus, the 

statement that the number of particles engaged in mutual encounters will 

remain constant before and after their interactions, can be written as 
O  f 

f  7^-dc = 0 (15) 
ot 

o irai la v 1 y , tns statement tn&t the totax ni omen turn ariu cncrg:: o± tuc 

participating particles will remain unchanged through the encounter 

process, can be written 

/ me?^ dc = 0 (16) at 

'   ^ ^    dZ    =    ° (1?) 

In general, for any function i/> which should remain unchanged during 
encounters,   one  can write 

/ 0 ^    dc    =    0 (18) 
ot 

Thus,   the  summational   invariants,   i/'i,   4>?  and s^s.   in  the   three  preceding 
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cases  under consideration,   will assume  the  values, 

0!     =     1 

and 
ty-2   ~  mc 

•4>3 
-2 

=  mc 
2 

(19) 

(20) 

(21) 

Having obtained the summational invariants as well as the relations 
between the VDF and macroscopic quantities of the flow, one can now 
solve the problem in a straight forward manner. With the aid of 0,'s, 
it may  be  noted  that   the   term, 

at 
describing the effect of particle encounters can be reduced to zero if 

it is multiplied by a summational invariant and integrated with respect 

to c in the velocity space. Thus multiplying each term in the Boltzmann 

Eq, (6) with the i/>i' s and integrating with respect to c in the velocity 

space, we have 

/ 4>i   c • VZf dc +/</»: F " VTf d5 = / ./s -S- dc I     r I     c x gt 
(22) 

According to Eq, (18), the term on the right-hand side vanishes in all 

cases.  By thir. method, the exact expression of 

at 

is therefore not needed, but the effect of particle encounters has 

properly been taken into account. 

Inserting, successively, in Eq. (22) the three values of the 

summational invariants, <pi > '/'a and i/'3, as given in Eqs. (19), (20) and 

(21), a set of three Integra] equations of the following form is ob- 

tained. 

Case s^: /c* • Vf f dc* + / F  V~f dc  =  0 (23) 

Case 0i:        m / c c * V f dc + m / c  F • V^f dc = 0 

>ase ^ i'. •/-.'-= Vrf dc  1 / 5' F • vcf dc - 0 

(24) 

(25) 
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With the aid of   the   four   definitions   of  the   zero,   first,   second  and 
third moments of the VDF as  given  in Eqs.   (7),   (8),   (11)  and   (14;,   and 
after   some   mathematical   transformations   (see   Appendix   I),    the   six 
integrals  occurring  in   the  set  of  equations   above  can  be  carried  out: 

V   (nc)   =   0 (26) 

[(sSfi)U + c 

V   •   (kn0)  - mn   [F - 

•   [V   -(kn0)]   +  kn0 

•   •   (Vc)]   =  0 

(V£)  - mnc   •   [F - c 

(27) 

07c")]     =  0 

(23) 

It may be noted in the set of the foregoing equations that "carrying 
out" the integrals was essentially replacing the microscopical quanti- 
ties, f, c, f(r,c) by a set of macroscopically definable mean values, 
viz., F, n, c and 0. Their connection with the microscopical quantities 

was established in the definition of the different moments. It is in 
this step of the development that one loses the microscopic view and 
gains   the  macroscopic  observation. 

The physical content of Eqs. (26), (27) and (28) can easily be 
realized. Equation (26) is the familiar equation of conservation of 

charge and matter. Equation (27) is known as the equation of motion in 
the hydrodynamics of perfect fluids. The third equation, Eq. (28), 
essentially expressing the conservation of energy in the ilow, is the 
new bit of information which is obtained by adopting the more general 
viewpoint of an existing temperature tensor © in the flow. The clas- 
sical viewpoint is obtained at once, if the terms involving 0 are 
neglected. If 0 is put to zero, Eq. (28) reduces to Eq. (27) which in 
losing  its   term 

V   •   (kr.6) 

would precisely become the classical Eq. (2) mentioned in the intro- 

duction. 

In other words, in the classical case the problem was attacked by 

solving Poisson's equation with the aid of the energy equation and the 

relation between current, charge and voltage. Turning our attention 

back to Eqs. (26), (27) and (28) which express the more general view- 

point adopted in this paper, one may note, that up to this point only 

three equations are at our disposal, whereas four macroscopic quantities, 

F, n, c and 0 are expeced to be computed.  Since Poifson's equation 
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correlates two of the four macroscopic quantities under consideration, 

- 2 
V • F = 4TC t_ n> ^29^ 

viz., F and n, and is independent of the thiee equations mentioned above, 

it can be used as the necessary fourth equation to solve for the four 

macroscopic quantities, F, n c and 0. 

A brief summary of this chapter on the problem and its solution may 

be appropriate. The problem consists cf solving Boitzmann's equation 

for the steady state case and for rectilinear flow, taking an integral 

effect of encounters into consideration. Solving Boitzmann's equation 

means, in the usual sense, solving for VDF under the particular condi- 

tions of the flow under consideration. But with the aid of four de- 

finitorial equations for the zero, first, second and third moments, a 

class of VDF's could be defined which may contain the "true function" 

and where any representative member of this class would approach any 

other member of this class of functions up to the third moment. With 

the knowledge of the overall behavior of a group of particles engaged in 

mutual encounters, expressed by the three summational invariants, three 

partial differential equations could be derived, connecting four macro- 

scopic quantities, F, n, c and ©. With the additional information with 

respect to distributed space charges expressed by Poisson's equation, a 

set of four mutually independent equations is obtained, which represents 

the ultimate amount of information obtainable in describing the physical 

properties of the electron flow from this general viewpoint. It can be 

seen easily that these four equations are not yet sufficient to solve 

for the four macroscopic quantities under consideration. The reason is, 

of course, that the four equations are written in vector form and repre- 

sent in the case of rectilinear flow a set of four scalar equations, 

since F and c in Eq. (27) are parallel to each other. The number of 

unknowns, however, is six, since 0 has three components. Thus, two more 

conditions must be established to furnish the set sufficient for de- 

termining completely the desired macroscopic quantities. These two 

additional conditions can be considered as particular specifications of 

the problem.  Two such problems, as it was indicated in the introduction, 

namely, the isotr~-pic flow and the anisotropic flow, will be separately 
... 

treated in the next section. 

Before concluding this section on the problem and the method of iIs 

solution, it may be pertinent at this time to give a representative 
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function for the class of VDF's which may contain the "true function" as 
one of its members. Considering that any VDF selected should be con- 
sistent with the Eqs. (8), (11) and (14), which define the first, second 
and  third moments,   one may suggest,   for example,   a  function of  the  form, 

*<m - a(JL-),/s(e1e8e,)-l/ieXp[- $-C±- + ^ • ^)]       uo) 
2rck 2k   8i        02        0a 

where n and 6's may be functions of r. This function is generally known 

as Schwarzschild's law® of ellipsoidal distribution of velocities. 

t 
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III     TWO  ESSENTIAL TYPES  OF  FLOW 

In the preceding section, it was pointed ou'c that two more condi- 
tions are necessary for the complete determination of the six macro- 
scopic quantities, F, n, c, 0i, 02 and 0a. In searching for the two 
conditions in question, one may explore certain specifications of the 

general problem, which should be appropriate for the actual situation 
under consideration. For example, imagine a situation in which the 
group of particles under consideration during their life time in the 
diode may have sufficient time to complete their mutual interactions. 
If it is possible to give a reasonable estimate of the time required 
to complete the mutual interaction, which may be called relaxation tiate 

tp, then this situation is indeed realized if the transit time tj for 
those particles is much longer than the "relaxation time" tp. The 
statement above, that the group of electrons is allowed sufficient time 
to "complete their mutual interaction?" means, of course, that this 
group has reached its equilibrium condition. From this, one can immedi- 
ately infer that the three temperature components, 0i( 02, 0s, for this 
particular group of electrons should be equal to each other. Hence, a 
situation  as  described  above may be  properly defined  by: 

0i   - ©2  = 03 (31) 

Since  all   three   temperature   components   in   this   case  degenerate   to   one 
temperature  scalar,   this  type  of flow may be  called  the   "isotropic flow". 
In our  search   for  two more  conditions  essential   in  solving  for  the  six 
macroscopic   quantities,   F,   n,   c,   8i,   02)   ©3,   one  may  note,   with  the   aid 
of the   set   of  four   fundamental   differential  equations   (26)   -   (29),   that 

... 
the   specification  as  described  above   furnishes  exactly   the   two necessary 
conditions over Eq. (31). Thus a necessary and sufficient set of 

equations has been established in order to determine completely the 
macroscopic  quantities  under  consideration. 

Similarly, imagine a situation in which the group of electrons 
emitted fiom the cathode are so swiftly drawn to the anode that no 
appreciable amount of particle encounters can take place in the space of 
the diode. This situation is realized if the transit time t-p for those 
electrons is much shorter than the relaxation time tp for this particu- 
lar group. Obviously, in this situation, the group of particles under 
consideration  will   not   reach   their  equilibrium  condition.      However,   ar. 
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observer, moving with the mean velocity along the electron flow, should 

in this case not be able to observe any essential change of the electron 

velocity distribution in the velocity components perpendicular to the 

axis of the flow. Thus the temperature components perpendicular to the 

direction of the flow become constant in the space interval of consider- 

ation.  Hence, a situation as described above may be defined by: 

3©«  90s 
0 (32) 

3xx  3xi 

Since all three temperature components in this case do not necessarily 

degenerate to one temperature scalar, this type of flow may be called 

the "anisotropic flow". One may note that the specification as de- 

scribed above again furnishes exactly two more necessary conditions in 

solving for our macroscopic quantities. Thus, in this case too, a 

necessary and sufficient set of equations has been established in order 

to determine completely the macroscopic quantities under consideration. 

The two situations briefly described above, namely the "isotropic flow" 

and the "anisotropic flow", will be separately discussed in two later 

paragraphs. 

Now, we will turn our attention to a more precise determination of 

the two terms already discussed, viz,, the "relaxation time", , t-p, , and 

the "transit time", tp. In making a reasonable estimate of the time 

required for a group of particles to complete their mutual interactions, 

we shall follow essentially Chandrasekhar's extensive work on the 

problem of encounters in stellar systems. The analogy with the electron 

gas is rather obvious if one considers that in both cases the inter- 

action forces drop with the inverse square of the mutual distances of 

the particles in question. Chandrasekhar defines a relaxation time for 

a star cloud at that time: most of the particles need to alter, through 

the process of their mutual interactions, their original kinetic energy 

by about an equal amount. Accepting this definition and converting the 

quantities designed to fit the stellar case into quantities appropriate 

for the electron gas, one finds for the so determined relaxation time, 

^  (k6)3/2 

'R 16/n 
(33) 

ne In 3k6 

Ze  n 
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With expression (33) for the "relaxation time", one can evaluate another 
quantity of interest, namely, the "mean free path". It may seem im- 
proper to define a mean free path for the election gas. Nevertheless, 
it is   instructive   to define  a  length 

A   -  tR  (Bkfi, 
% (34) 

nm 

which plays the same role for non-uniform electron gases as the mean 

free path does in the classical kinetic theory of gases, where the 

molecules are idealized as rigid elastic spheres. Of course, this 

"mean free path" is defined in the moving coordinate system and is 

applicable whether the gas as a whole is actually moving or not. 

Having obtained an expression of the "relaxation time" for the 

group of particles under consideration, one may now determine the trans- 

it time for this group of particle's. Since the transit time for a group 

of particles in a diode is nothing more than the mean life time of this 

group in a spatial interval an appropriate definition of what we may 

cali a "mean transit time" may be given by 

rb   ^Xi /~-x 
tT = / :  (35) 

a  c (xj 

for a spatial interval between points a and b in which the electron gas 

is under consideration. Since the mean velocity, c, is a single-valued 

function of x1( formula (35) is applicable to the entire region of the 

diodic flow. Without the definition of the mean velocity (Eq. (8)), one 

cannot define the transit time of electrons in all cases, especially of 

the emitted electrons which are eventually returned to the cathode. 

The fundamental distinction between the two situations described 

above -- the isotropic and the anisotropic flow -- is that for isotrop- 

ism, the relaxation time (tp)£s is very short in comparison with the 

transit time tj 

(to).  < < tT 
is 

whereas for anisotropism, the relaxation time (tp) should be much 

longer  than   the  transit  time  t-r 
an 

(tR> > > 
an 

tT 

This allows oae to draw an important conclusion with respect to the 
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number density in Loth cases, since tp is about inversely proportional 

to the number density of the electrons under consideration (see Eq. 

(33)). Assuming the transit time t-p for both cases to be roughly the 

same, the two cases may also be distinguished by the inequality 

(tR)   > > > (tR). 
" an        " is 

or using Eq. (33), which expresses the relaxation time in terms of the 

parameters describing the electron gas under consideration, one finds 

(n)an < < < (n)is 

This strong inequality suggests that Poisson's equation will degenerate 

to Laplace's equation in the case of the anisotropic flow. 

The specifications given for the two situations are based upon the 

determination of the "relaxation time" and the "mean transit time" of 

the group of particles in question. In concluding the introductory part 

of this section on the two essential types of flow, it might be well to 

list all the equations which will be used in solving the problem. 

However, for the sake of simplicity, we shall confine ourselves to the 

parallel plane diode. For the electron flow in the parallel plane diode 

where the variations of the macroscopic quantities, F, n, c, ©i's are 

only in the direction of the flow, the general equations derived for the 

electron flow are reduced to simpler forms. The general equations 

(26)-(29) expressed in their reduced form, together with the conditions 

of the specifications as mentioned above, are listed as follows: 

/    (nv) 
dx 

0 

-d- (kn6a)  - mn   (F - v dl)   =  0 
dx dx 

(36) 

(37) 

J_[k£v(3 @i + 0? + e3)] _ nv (F _ v di) . 0 
dx    2 dx 

(38) 

In the case of the "isotropic flow", 

f F=0 
dx 

dx 2  dx 3 

(39a) 

(40a) 
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In the  case  of  the   "isotropic   flow", 

-d- F = 4rt *— n 
dx m (39b) 

0i  =  0,  = 0s (40b) 

where F,   v and x «re used instead of F,   c and x4. 
The problem now consists of solving simultaneously the set of the 

above equations, (36) - (40). For the electron flow, Eqs. (35) - (38) 
are valid in general. In the case of the anisotropic flow, Eqs. (39a) 
and (40a) are added, whereas in the case of the isotropic flow, Eqs. 
(39b) and (40b) are added. However, some insight can be gained immedi- 
ately by integrating Eq (36) with respect to x. Equation (36) now 
becomes 

nv  =   i (41) 

where j is an integration constant of the equation. Since the displace- 
ment current is zero in the steady-state case, je becomes the actual 
electric current density in the diode circuit. Equation (41) gives the 
functional relationship between the number density n and the mean 
velocity  v of the  electrons  in  the   flow. 

Another possibility of establishing a functional relationship 
valuable foi both cases would be to eliminate the external force F from 
Eqs. (37) and (38). Eliminating F from these equations and making use 
of Eq.   (36),   one  obtains 

r-V (0!   + 0,   + 0S)   + 2. Jl =   o 
0i  dx v dx (42) 

In  the  case  of  the   "anisotropic   flow" where  the   temperature components,, 
02 and 03,   are  independent  of x,   Eq.   (42)   yields 

It   (x)   [v(x)]2   =  0i   (o)   fv(o)]2 constant (43) 

where ©i(o) and v(o) are the x-component of the electron temperature 
and the mean velocity at the emission surface. The macroscopic quanti- 
ties at the emission surface are known as boundary values, the evalua- 
tion   of  which  will   be   given   later.      Similarly,    in   the   case   of   the 
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"isotropic flow" where the components of the electron temperature are 

equal to each other, Eq. (42) then yields 

[e^x)]3 [v(x)]2 = [6,(o)]3 [v(o)]2 - constant (44) 

These two equations indicate that the electron temperature in the 

electron flow of a parallel plane diode decreases as the mean velocity 

of the electrons increases (Appendix II). If one could find the mean 

velocity as a function of x in the electron flow under consideration, 

the variation of the electron temperature along with the electron flow 

could be determined from Eqs. (43) and (44). 

In the following, we shall consider separately the two types of 

flow; first, the "anisotropic flow" and second, the "isotropic flow". 

3.1 Anisotropic Flow 

As mentioned before, the problem now is to solve simultaneously 

Eqs. (36), (37), (38), (39a), and (40a) for the case of the anisotropic 

flow. It is clear that the LaPlace equation, (39a), for the field 

between two parallel planes merely implies that 

F = «• E m (45) 

where E is the applied electric field, independent of the coordinate x. 

With Eq. (45) and the two functional relationships, Eqs. (41) and (43) 

just derived, one is able to replace n, 0i and F of Eq. (37) in terms of 

the mean velocity v and the applied electric field E. Equation (37) 

then reads 

„ dx _ A_ d_y. _ e_E 
dx  „3 dx 

0 (46) 

where 

3k 0a (o) [v(o)] 

Since ©i(o) and v(o) are the boundary values of the temperature com- 

ponent and the mean velocity of the flow, A is independent of the 

coordinate x. After the equation is integrated with respect to x, we 

have 

v2 + 4 -2JS£X.= G (47) 
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In this equation, G is an integration constant independent of x.  Since 

v = v(o) 

one obtains from Eq. (47) that 

at x = o 

G = v^(o) + 
v"(o) 

With the constants A and G, determined as above, Eq. (47) can be written 

(48) v(o) 
_ 3k 8l(o) 

m[v(o)] 
rvloiT \  =       2eEx 
LV(X)J I   n,[v(o)]2 

From the above equation, one may calculate the mean velocity v as a 

function of the coordinate x for an electric field E. 

In order to expose the physical contents of Eq. (48), it is first 

necessary to show how the boundary values in the equation are de- 

termined. To do this, the surface condition of both cathode and anode 

has to be found. Although our understanding of the thermionic emis- 

sion10 has been advanced considerably in the last decade, we are still 

unable to calculate the quantities n, v and 0i accurately at the emis- 

sion surface. Here we use a reasonable model from which these vaiues 

can be evaluated. The accepted model is as follows. All the electrons 

which arrive at the anode are collected by the anode without causing any 

stray disturbances. The emission surface can be simulated by a uniform 

surface of work function W with a velocity dependent transmission 

coefficient D of the simple form, Fig. 2, pg. 4. Based on Nottingham's 

experimental work"11, this is designed to approximate the actual coef- 

ficient by a simpler form in which the normal energy e is of the order 

of half an electron volt.  Then the VDF at the emission surface becomes 

f(o) = 2ml D exp [_ e_W_] exp [ _ 
kr 

nuci + c2 
+ c3 ) 

2kT 
Ci > 0 (49) 

I 

=0 , ci < 0 

w'nere T is the temperature of the emission surface.  With this VDF at 

the emission surface, the boundary values n(o), v(o) and ©i(o) can be i 3 J 
-24- 

• 



1 

I 

evaluated in a straight forward manner (see Appendix III).  The results 

are as follows: 

n(o) = L2n mkT)3g (kl) [_ e.Wj (50) 

2h ee kr 

v(0)  =  2(tt&)A   [1 - exp(- £tt)] (51) 
Ttm kT 

0i(o)   -  lJLYA    T (52) 

Having evaluated the boundary values as above, one can see that 

Eq. (48) is normalized by the mean velocity of the electrons at the 

emission surface. As compared with Eq. (2) of the single-valued veloc- 

ity theory, Eq. (48) contains an additional term, the second term on the 

left-hand side  of Eq.   (48).     Since   the   factor 

3k et(o) 

mv        (o) 

in this term is usually of the order of unity, this additional term is 

actually a correction term to calculate the mean velocity of the elec- 

trons close to the emission surface.  When the ratio 

v(o) 

becomes large, the velocities calculated from Eq. (2) and Eq. (48) arc 

about the same. After the mean velocity of the electrons in the diode 

is obtained, the number density and the electron tempera Lure can easily 

be determined from the functional relationships derived before. In 

short, from Eqs. (41) and (43), 

n(x) = n(o) p-Lal] (53) 
v(x) 

and 

8»(x) = 0(o) [xlal] " (54) 
v(x) 

As a conclusion, a typical example for the anisotropic flow may Le 

cited here.  Suppose the work function12 of the emission surface is 
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1.2 volt; the values of tp and \ (Fig. 3) are calculated from Eqs. 

(33) and (34) against the cathode temperature. In a case of operation 

where 

cathode temperature    = 700°K 

cathode anode spacing  = 0.5 cm 

anode vjltage with respect to the cathode • 300 volts 

one obtains from Eq. (33) 

tR = 1.8 x 10~7 seconds, 

but frow Eq. (48) and Eq. (35) 

ty = 1.9 x 10~8 second, 

The result that 

tT < < tR 

agrees with the specification given to this type of flow. 

3.2  Isotropic Flow 

As pointed out earlier, the number density n is generally high in 

the isotropic flow. This may be due to a weak applied field which does 

not draw all the emitted electrons away quickly enough. Also, it may 

occur if the emission current is too high for the applied voltage on the 

anode. In either circumstance, electrons may be accumulated to a very 

high density in front of the cathode. So the problem in this type of 

flow would be to solve simultaneously Eqs. (36), (37), (38), (39b) and 

(40). 

The processes of solving these equations are very similar to those 

used in the case of the anisotropic flow. In the first step, the 

Poisson's Eq. (39b) can be written as 

2 ft 

dx      mv 
dE = 4n jel (55) 

after relation (41) between the number density n and the mean velocity v 

is used. In the second step, one may replace n and 8i of Eq. (37) in 

terms of the mean velocity v through the two functional relationships, 
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Eqs. (41) and (44), derived before.  Then, 

L 

dx - _L it _ F = o 
dx     v6/3dx (56) 

where 

* m 

One may eliminate F from Eqs. (55) and (56) in order to obtain an 
equation for the mean velocity v for this type of flow. Differentiating 
Eq.   (56)  with   respect  to x and  then  combining it wiuh Eq.   (55)  gives 

2 
(1 - _JL_) v i_v +  (1 + _£!!_)  (dv)» _ 4JUe_ = o (57) 

"8/3        ax' 3v8'3      ^x mv 

This equation does not involve the independent variable x explicitly13 

and it may therefore be reduced to a first-order linear differential 
equation by suitable transformations. The solution (see Appendix IV) 
can   be   written   as 

'M - ani£!v(1 + __sa_) \~y\i _ -L)vdv   (58) 
5vB/3    > vB/s 1* 

This solution contains two integration constants, L and M, which have to 

be determined by two boundary conditions. It is clear that the non- 

constant force field, Eq. (39b), adds more difficulties in solving the 

problem for this type of flow. 

Again, we shall use the reasonable model with which estimation of 

the boundary valuer, can be made for the case of the isotropic flow. In 

doing this, it is obvious that the present method is by no means the 

most accurate, but certainly serves as an illustration of how boundary 

values in this problem may be determined. 

In the isotropic flow the expression for the cathode emission 

[ 1 
jt = inn  (kT)2 kl^l - exp [- f|]>exp [-£*] (59) 

remains the same; but a large portion cf trie  mitted current is com- 
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pensated by the returning component of the current at the emission sur- 

face. Thus the actual current density, j, of the isotropic flow is one 

such that 

J_ = 

it 
Rs < < 1 (60) 

This parameter Rg is the ratio of the number of electrons actually drawn 

to the anode and the number of emitted electrons per unit area in unit 

time. Hence Rg can be regarded as one of the operating conditions of 

the diode. In this situation, the electron gas at the emission surface 

would not follow the half-maxwellian VDF, Eq. (49), but rather approach 

a nearly symmetric rriaxwellian VDF. This nearly maxwellian electron gas 

may stretch itself out to a great extent away from the cathode. In other 

words, one can then assume the electron gas at the emission surface to 

be in equilibrium with the emitter, 

©1(o) = T (61) 

Since the electron gas at the emission surface1 is nearly maxwellian, the 

returning component oi current is 

n(o) JOT] 
Z >uii j 

_ J 
With the above description of this model, the boundary values of n, v 

and ©j can be determined at the cathode surface.  They are: 

n(o) • jt(l - Re) 2.Hm 
kT 

nH 

, \        Rs v(o) = r^fc _kl_ 2nm 

X 

(62) 

(63) 

0! (o) = T 

in which jt. T and Rg are considered as known quantities. 

(64) 

To evaluate the two constants, L and M, in Eq. (58), another 

boundary value of the mean velocity v must be determined for this 
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problem. For this purpose one may consider that the number density of 

the electron flow decreases as the mean velocity increases in the flow. 

From the expression for the relaxation time, it is noticed that the 

relaxation time is about inversely proportional to the number density of 

the electrons under consideration. Because the condition of this type 

of flow is specified through the relaxation time, it is apparent that 

the isotropic flow may become anisotropic if the electrons in the flow 

are accelerated to reach sufficiently high velocities. In the region 

where the mean velocity reaches a sufficiently high value, the percent- 

age difference of the mean velocities calculated from the Eqs. (47) and 

(58) for the two types of flow is much smaller than the difference in 

the region of low mean velocity. Because of this fact, a good approxi- 

mate value of v(x2) can be calculated from Eq. (47) for the anisotropic 

flow, provided that a suitable distance x2 is selected for the calcula- 

tion. In the space-charge-]imited flow, this distance x2 may be longer 

than the actual cathode-anode spacing and is used only for the purpose 

of detein)ining the second boundary value of the mean velocity in the 

flow. 

The boundary values of the mean velocity at a distance t? and at 

the cathode surface are necessary and sufficient to evaluate the con- 

stants, L and M, in Eq. (58). After evaluating these constants, one can 

calculate the mean velocity v(x) throughout the isotropic flow. Using 

the same manner as fqr the anisotropic flow, one can also find that 

and 

n(x) = n(o) 

0! (x) - 8, (o) 

viol 
v(x) 

viol 
v(x) 

9./5 

(65) 

(66) 

As a conclusion for this section, some calculated results may be 

cited here Using the same example as given for the anisotropic flow, 

one may raise the cathode temperature to 1100°K. When the anode voltage 

is about 300 volts, the parameter Rg has the value of 0.005. From Eqs. 

(58) and (35), the mean transit time of the flow is obtained 

m 
W tT = 2.4 x 10  second 

for an interval from v(o) to 10 v(o).  However, from expression (33), 
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one may calculate the relaxation time in this case, 

tR = 3.4 * 10_1? second 

The result that 

tR >  >  tR 

justifies the condition adopted to specify this type of flow. 
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APPENDIX I 

DERIVATION OF THE FLOW EQUATIONS 

In this appendix, the derivation of the flow equations, (26)-(28) 

is given in detail. This is provided as a review for the convenience 

of the reader. 

Multiplying each term in the Boltzmann Eq. (6) by 0 and integrating 

with respect to c in the velocity space, one obtains 

f $  c • Vrf dc + / 0 F • Vcf dc = / 0 •£- dc       (22) 

Using  the  rule of integration by parts,   one  can write 

/•Ac,-9-*-     dc     =    JL/^cfdc-Zfc^-dc-^l-nc,^ 
oxj dxi ox. oxi oxi 

(I) 

and 

/  0    --^ dc =   //   [0f] dc?dc3   - If &k dc  =-n-9-^ 
oci Cl =_ c oCl dCl 

(ID 

where c and r are separate independent variables of f, and c is inde- 

pendent of r Since the usual hypothesis is that i/-'f tends to zero a? 

Ci tends to infinity in either direction, the integrand in the second 

integral of Eq. (II) vanishes in general. If </> denotes one of the 

summational invariants, the right-hand side of Eq. (22) vanishes in 

general. With expressions (I) and (II) available, Eq. (22) can be 

written   in   the   following  form 

Vr°n^c-n<c       V^+F-  V^> -   0 (III) \   c        vTyj  +   r    •   vcoy 

It is more convenient to specify the VDF and </> as functions not of 

c but u, where 

, u = c - c 

Hence, the next step is to express Eq. (Ill) in terms uf the peculiar 

See for exair.;:!e S. Chapman and T.G. Cowling, Mathematical   Theory  of Hon-Uniforn  Cases 
Reference 6. 
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velocity u.      In  changing  the  variable,   we must   replace 

Vr0 by V 

3ML 
9XI 

by d\p _ 9j£   _3_iL 
9x i      9u    9x ! 

and 

Vd, by Vrv/. - Vuy    •   (c   •  Vr)  c 

One   may   note   that   the   mean   values   are,   of   course,   unaffected   by   the 
change   of   variable.     After   the   substitutions  of  these   terms,   Eq.    (Ill) 
becomes 

Making use of the identity 

i 

Vu^   •   [u   •  Vr]   c  =   u    vu0   :   Vrc*, 

one   can   reduce  Eq.    (IV)   to 

F   • 7r  (n^)  + n 0 Vr   •  c + V 

(V) 

n  \JJ   u 

  .  
• Vr^ + u   • Vr^ +   (F - S   • Vr c)   • VuVf; - UV^ 

(VI) 

The notation of two dots used in Eq (V) is the so-called double product 
of two tensors. The significance of the bar placed over any quantity 
means   the  mean   value  of  that  quantity 

In   the   following,   we  shall   consider  Eq     (VI)   for   the   three   known 
values   of summational   invariants.      For   the   case, 

01     =     1 
then 
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Finally Eq. (VI) becomes 

For the case 

then 

0i = 1 

v* = ° 
Vr0t - 0 

Vr (n c) = 0 

02 = m (c + u) 

02 • mc 

n02 ^r • c = mmc • (^rc) 

n 02u - kn0 

^r 02 = m Vr c 

u Vr 02 = 0 

V. 0 
uVa 

= m 

ana 

(26) 

Vu 02 u - mu =0 

Hence, Eq. (VI) with the aid of Eq. (26), in this case, can be written 

Vr • (kn 8) - inn [F - I • (VrS)] = 0 (27) 

03   =  j m   (u  +  c)' 

For   the   case, 

then 

I   m?9    * ry    nil- -V       »    O j 

n  0au  =   kn 6   •   c 
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\ *.  = Vr c2 

u Vr 03  =  k0   •   (V.  c) 

VU    ^ mc 

and 

(Vn03)   G  =   k  0 

With the  aid  of Eq.   (26),   Eq.   (VI)  can be  reduced  to 

V a k-^i)s +  c V   •   (kn0) +  kn©   •   (V6*)   - mnc F - c   •   (Vc) =     0 

(28) 
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APPENDIX  II 
FUNCTIONAL RELATIONSHIP BETWEEN 

THE ELECTRON TEMPERATURE AND THE MEAN VELOCITY 

In this appendix, we shall be concerned with the acquired knowledge 

of the variation of the electron temperature in a rectilinear flow. In 

the text, rectangular coordinates are chosen and the rectilinear flow is 

along the first coordinate, say xt. In the case of the "anisotropic 

flow", we have 

d_ 02 . d_ @3 . 0 (40a) 
d x i      d x i 

and 2 ,,„,. 
VI i   v  = constant (45) 

Since the rectilinear flow is a long the coordinate Xi , Eq. (40a) ex- 

presses the fact that the temperature components perpendicular to the 

flow ©2 and ©3, remain constant throughout the flow, whereas the temper- 

ature component along the flow 0t, decreases with the inverse square of 

the mean velocity v. (See Eq. (43)). In the case of the "isotropic 

flow", 

0t  -   08   -  6a (40b) 

and 

@!  v  = constant (44) 

Since in this case the electron temperature components are equal to each 

other, Eqs. (40b) and (44) imply that all three temperature components 

will decrease with the inverse two-third power of the mean velocity. 

In the above equations, the variation of the electron temperature 

is expressed in terms of the mean velocity in a rectilinear flow. In 

order to exhibit the functional ieiaLiuusiiips between the electron 

temperature and the mean velocity it is worthwhile to plot the varia- 

tions of the temperature components against the mean velocity on log-log 

paper.  In such a plot they are straight lines as shown in Pig. 4. 

In considering the velocity distribution of the electrons in the 

entire flow it is necessary to study the variation of the temperature 

components in the velocity distribution function 
Q 

<P  -   nW^   (9,  62  0  3T
1/? exp   [-  JJ-&L-  •  !£-   • !£-)] 

2ik Zk   (3 i 02 B 3 
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If the rectilinear flow has a cylindrical symmetry, temperature com- 
ponents perpendicular to the flow are equal to each other. In this case, 
it is convenient to speak in terms of 02 instead of 0lf and 0r instead 
of 02 and 03. After this transformation, the velocity distribution 
function  may  be  written 

 ffi_ \J/2 

i2nk0r  2nk0z| 
exp 

mcr  _ m(c7 )' 

2k0T 2k0, 

One may note that, if the relationship between the mean velocity 

and the coordinate x along with the flow is established, the temperature 

components can be expressed as a function of x in the electron flow under 

consideration.  If, for example, the ChiId-Langmuir iaw is accepted, 

i.e. v °° x 
2/3 

then the electron temperature becomes a defined function of the distance 

in the flow Replacing v, the mean velocity, in Eqs. (43) and (44) by 

the Child-Langmuir relation, one obtains: 

-4/3 
anisotropic flow:     61 0B x ' 

and 

02 
= 03 - constant 

isotropic flow: 

0! - x"*/9   i = 1, 2.   3. 

These relations are plotted in Fig. 5 
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APPENDIX   III 
EVALUATION  OF THE  CONSTANTS  AT THE  EMISSION  SURFACE 

In  this   appendix,   the  calculations will   be  carried   out   under  the 

assumption  that  at   the  eniisc.ion  surface   the  VDF is 

2 3 2 

t(   ^   - 2m9 rx           r    eWn             r    m^Cl     +  c*~  + C3 i f (o)   - ^ D exp   [- *H   exp   [ — ] d > 0 

and the transmission coefficient D is 

:, < 0 

D = 1 2 mci ">    A C 

m Ci 

~2elT /4 mc i  < e e 

Let us first integrate the VDF with respect to c2> c3, i.e. 

.T   r fdCldc2 - *£ (2jrkT) D exp [_ eft    [_ -ci j 
n„=-co   c „ =-oo (VII) 

The  integration with respect  to ci     is  as   follows: 

v   m    * mc 
X exP   !• 

2 2 

W1   dGl  +    \   e K 
6XP   [" ~2kf]   dCl (VIII) 

•-•'•• 

2e6   ' Vl 2kT 

(^)" 
r  m       r  mci . 

- j expL- ——Jdci 
o zkl 

'/ 

,« ,     mci 
J (    exp   L~ -TTTSCJ   uci 2kT 

With   the   transform 

2kT 

40 
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and 

dci = (2kI,A dy 
m 

expression (VIII) becomes 

_kX '/«  AT' 

(2me6) 

5xp r_e^ + Iklil- i « exp t_ ,]dy + (2||I) 

(2m) e6 

/    exp [-y J dy 

Since e is about 0.5 volt and kT is about 0.17 electron volt even at 

2000°K, the value of (r-y) is often much greater than unity.  The third 

term has the same value but different sign as the first term, so only 

the second term is left to be evaluated. Expression VIII can therefore 

be approximated within an error of three percent by 

2ee  2m 

According to Eq. (7) in the* text, one obtains from expressions (VII) and 

(VIII) 

3 / 9 
n(o) ,  (2*mkT)J/' (kT)    f_ ej] 

2h3    ee       kr 

Second, J can be evaluated by first considering 

t AGS-\ 3 2 S 
m    -   inci r     met r°> mc, 

TeT 6XP   [~ W   dCl   +  '     £ ,
C1CXP   [~ -2kT]   dCl 

kTci mci\ 
 exp    L"~ J 
lee ' 2kTJ 

(^) |(^) 
( kT)2 r    nnCl i "   LKij- exp t-  ~J 
mee zkl 

2kT     l/laCj" 
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LkT)_ ;1 _ exp [_ei] 

meo k i 

According to Eq.   (8)   in  the  text,   one  then  gets 

j , 4gn LkHi [i _ exp (_ B|>] exp  [_ el] 
rr        ee kl kl 

and 

v(o)   •  2   (2-kI)2   [1  - exp  (- e£)] 
Ttm k I 

Third,   the  following    integrals are   considered   in   evaluating   the 

temperature   component  0i   at   the   cathode  surface: 

o 2eo 2kT »   ^H 2kl 

mc • 
(ci   - v)     exp   (.- •)  dci 

,2ee 

Again,   with  the   transform 

and 

mci 

2kT 

(IX) 

•-•v- i 
(2J<I)     dy 
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expression (IX) becomes 

(?•£) /l"'   I")  W'" y2   [y 
e6 m 

(r-1?^)' v]2  exp   [- v2]dy  + /       ,    ( 
!kT 

kT 

2kl)3/2 

M 
[y -- (~)2 v^   exP C~ y2^ dy 

Since   the  value  of   (^)   is  often much greater  than unity,   the  above  ex- 
kf 

pression may be approximated by 

3 /?   -00 % (kl) ^kl)3'? /%• [y - ( m )* vr exp [- y2; dy 
o 2 k 1 

(X) 
eu   m 

Using the known general integrals 

J  y exp L- a y J dy _ <^L . 1 .3.5 
2  2  2  2 

-(Y + D/2 
. r_ ;  y = even 

integer 

f  Y     .     9.      I  -(Y + D/2 ,Y _ i.l 
J  y exp [- a y J dy = ±- a (Y   L) 
o z Z        ' 

Y - odd integer 

and the expression of the mean velocity v evaluated above, Eq.   (X), is 

reduced to 

(3rc ~ 9) (kl) (2kI)
J/? 

Qv'K ee   m 

According f> the definition of 0, Eq. (11), and the number density n 

evaluated above, one can simplify the expression so that 

0! = 2JL_-_£ x 

1 43 

u 
* £ _*U . ~«*«&i .... 



APPENDIX     IV 
SOLUTION OF THE  EQUATION 

(1 E_)v dlv + (i + _iB_)  (dx)5 - 45j 
.     2 
e 

e/3       d> 3u 8/3 d3 mv 

The equation does not involve the independent variable x explicitly 

and it may therefore be reduced to a first-order differential equation 

by  letting 

dy_ 
dx 

ind <&- =  y 4* 
dx' dv 

Then 

(1 -   —&-)vy d*  +   (1  +  _5-B_) 
8/9      av 3u 

8/3 inv 

Furthermore,   let 

y    =  * 

then   the  above  equation  may  be  written  as 

d* 
2 

+ _ 

v 

k + 5B 

3v8'3/ 
dv 

(. 
V 

+ 
•BJ\ n / 3 

V   ' 
I 

Rjxje_ 
i 

2 'i mv   i 1 
8/3 

This   is  a   first-order   linear  differential   equation,   so   it   can  be  solved 

by  the   general  method.     First,   evaluate   the   integral 

Oil   +   -3V   , 
V       3veW dv 

0/3 

\ V J 
It  is   more  convenient,   if  one   uses 

i /s ,    . "<     -s /a    , 
'     =   a and  dv  =  i u da 

8 

(XI) 
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After this substitution, integral (XI) becomes 

J + J B  . 
1  3__ d'd 

*        4  u - B  u 

= 3. / da • 2B / -r-d 
4  w       u(u - B) 

= 2- ln u + 2 in ^—-B 
4 u 

= ln -i-*——^-BJ- 
v10/3 

Second, evaluate the integral 

8nie c„8/3 2 

/ __^lf     (v°N -B)'     dv 
i-» 10/3 

mv
2(l      __B__) 

a /3 
v 

n       .      2 ,      8  / 3 _,       8 / 3 

&2j^l    [/ dv - / B_dx] 
m 8/3 

d!U.el   [y   +   —3JB_] 
m 5v5'3' 

Ssj s v   ri   :  _HL.] 
ro !5v

a/:i 
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The solution of the linear equation can be written as 

z = M 
lo/a       „    2 -D 10/3 

i + &.?Ue—v [l +  3B ] [ X ] 
(v8/3 _ B)v 5ve/3   (ve/3 _ B) 

10/3 

(v^3 - B): 
[M + a.iu_e_v (1 + _a£_)] 

5v e/3 

where M is an integration constant.  So 

dv_ = +  v rM + 8.7tJe v(i + - 3B_)] 
dx     (ve/a _ B)

L      m       5v8/3 • 

If the positive sign is chosen, then 

dx = y_!_!    [M + 8njft2v(i  +    3B-)]"^ 
dv       ve/a  _ B m 5y9/3   - 

and 

x + L = / [M + ^j£i (i + -3_B_)] 
v- (i - _a_) v du 

m ,.8/3 9/3 I" 5V v 

where L is another integration constant. It is clear that two boundary 

conditions are necessary in order to evaluate the integration constants , 

M and L. 
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1.      INTRODUCTION 

Ever since the discovery of thermionic emission, one-dimensional 
electron flow has been an interesting problem. The theory presented in 
Part I of this report deals with the electron gas in a rectilinear 
flow. In the theory, the electron flow between the cathode and the 
anode  can be  described completely with  four macroscopic quantities: 

1. External  force   field    F 

2. Electron number density    n 

3. Mean  velocity    c 

4. Electron  temperature 6 

The first three quantities are familiar to us since they have been con- 
stantly used in the single-valued velocity theories. Experimental 
methods to determine these macroscopic quantities were developed long 
ago and are not discussed in this paper. However, the.ppplication of 

the last quantity, in this context the electron temperature tensor 6> 
may be  a  constructive  contribution  in  this   field. 

In Part II of this report, we shall devote ourselves to the devel- 
opment of a method which would enable us to measure the electron temper- 
ature in a rectilinear flow Much of the attention will be given to the 
design of an apparatus with which the experiment is carried out. The 
present work is by no xcar.s a complete study of the subject, but the 
results of this experiment proved to be an interesting exposition 
concerning  the   temperature  of  the  electron  gas   in  a   parallel   plane  diode 

• 
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2 THEORETICAL CONSIDERATIONS 

• 

In order to achieve the objectives stated in the introduction, 

theoretical consideration must first bt given tc the design of an 

apparatus which would be appropriate for the experiment to be performed 

The apparatus should have an electron source, say. a cathode and an 

electrode acting as an anode to collect the arriving electrons Since 

the electron flow discussed in Part I of this report is of rectilinear 

type, the structure of the apparatus is certainly expected to provide 

a parallel-plane flow between the cathode and the anode. In studying the 

velocity distribution of the electrons in the parallel-plane flow, use 

can be made of a field-free region. Ideally, one would take a sample of 

the electrons from the parallel-plane flow and set this sample of elec- 

trons free in a field-free region The space distribution of the 

current in the field-free region would then exhibit the velocity dis- 

tribution that the electrons had before they were set free. With the 

given definition of the electron temperature, an obse-ved velocity 

spread can readily be expressed in terms of an electron temperature. 

This scheme would avoid the use of a probe usually applied in obtaining 

information at the point of interest. Here, in contrast to the probe 

measurements, the point of interest is placed at the boundary, hence 

there is no probe disturbance in the measurements. The most appropriate 

choice of a boundary would be the collector electrode. Thus, allowing a 

smail sample of the flow to pass through an aperture into a field-free 

region would accomplish the desired function With an arrangement of 

this sort in mind the essential feature of an apparatus can be sketched 

(Fig 1) The apparatus consists of two parts, a parallel-plane diode 

and a field-free anode chamber Although the detailed description of 

the apparatus will be given in the next section, its essential struc 

t.ure can be easily recognized A small section of all the electrons 

forced in a Pierce arrangement to flow parallel from the cathode to the 

anode is permitted to enter a field- free region through a fine hole in 

the anode Due to their radial velocity component, the thin beam will 

expand and the angular current-density distribution can be measured by 

again sampling a smail section of that beam through a fine hole in a 

slide. As a result the current-density distribution at the back wall 

of the anode chamber gives us the information about the velocity dis- 

tribution   of   these   electrons 

• 
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In this experimental arrangement, deviations from the ideal case 

described above can be expected They will be taken up in detail in 

a later section and will turn out to be very small indeed. In this 

section, however, we shall restrict ourselves to the calculation of the 

current-density distribution at the back wall of the anode chamber for 

the ideal case. 

For this calculation, Fig. 2 is an illustrative diagram of the beam 

expansion due only to electron temperature.  Anode plane is at z = 0; 

anode orifice is set at the origin.  The back wall of the anode chamber 

is at z  -  Z. 

*— z 

; FIGURE 2  DEAM EXPANSION DUE TO ELECTRON TEMPERATURE 

The calculation of the current-density distribution at the back 

wall of the anode chamber is based on the velocity distribution function 

dealt with in Part I of this report Krom the point of view of the 

particle dynamics, the momentum and energy of the particles are the 

primary variables in the dynamic problems. Consequently, in practice 

one would not meet functions of the particle velocity higher than the 

quadratic Leim. As shown in Part I of this report, the moments higher 

than the third moment of the velocity distribution function do not 

nppear in all the equations Owing to this fact, one is able to select 

a representative VDF such as the one given in Eq. (30), Part I, of this 

report. It is noted that the given function is only a representative 

one in the class of the VDF's and will approach the "true function" up 

to the third moment. However, the VDF given in Eq. (30) is the appro- 

priate one for the purpose and can be widely used in this field.  Since 
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the structure of the apparatus will have a cylindrical symmetry, the VUr 

in Eq. (30) is now expressed with variables in the cylindrical co- 

ordinates, namely, 

f = n (. JL_) (-m-)54 exp [- 5£xl - m(c* " Y)g] (1) 
V27tker

/   v2nk8z
; P   L    2k0r 2k©2 

J 

where   n   is   the   number  density,   v   is   the  mean  velocity,   0r   and 0,   are 

the  temperature  components  in  the   r and  z directions  of  the electrons  at 

the  anode  orifice. 
With the velocity distribution function of Eq. (1), the calculation 

can be made in a straight-forward manner. Per unit area of the anode 
orifice, the current between the concentric cones with apex angles 20 

and  2(6   + 6)   as  shown  in Fig,   2   is 

U     co c,tan (0+8) K 

2nk©r    2Ttk0, z  c   tan<? 
r 

z 

2      I \2 
mc_   m(.c7 - v) 

exp 
2k0r   2k 0Z 

The above integration over Cz is carried from zero to infinity since only 

the electrons with a position velocity component in the z-direction will 

contribute to the current. Since trie area of the anode orifice is TCr0 , 

the current density of the Z-plane between the polar angles 8 and 9+6 

becomes 

nZ9[tana(G + 6)- tans6] 

Since the angle 5 is small, Cr may then be approximated by Cz tan 

under the radical sign.  Ordinarily, 

2 
CIV /2 > > k0r > k0z (2) 
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so the above expression can be written as 

Jo   ,, . & 

r,   © 

i 
J(6,6) 

3/2 
(1+^tan'e) exp<- Jf-n -   (1   -^ tan29)     ] 

r.Z2cos  9 0r 1     2k0z 0r 

«        ,..     -.-An 

1   -- exp<- -Jtt- (1  + r-2- t«naB)       -1  + ^ tan2(9 + 6) 
2k©   < Wr 0r yj 

tan2(G + 6)   - tan2f 

where   I0  is   the   total   c-rrcnt   through  the  anode  orifice, 

Io  -  nv itr0 

Because 

1  - exp<- ^[(1   +|«- tan26)   * -  (1 + f* tan*(6 +  6))" 
1     2k0z             er                                     0r f 

lim ; „ •. -     my 
6-0 

tan2(9  +  6)" -  tan'e 
2k@ 

the expression  of  the  current  density at  the Z-plane with a  polar angle 

8  can be  reduced  to 

J(6)   = — (1  + f* tan29)   h" (-m-2-)  exp 
TtZ2cos   6 yr 2k8r 

2 fi     , -I, 
- JO-tl - (I + -i tan'9)  J' 
2k0,        ®r        I 

For small values of 9, this expression can be simplified to 

Io , J(0) = _^ (.mv_) exp /_ _my_ e'v .1 
rtZ2 2k0„     I zkor J 

(3) 

This current-density distribution at the Z-plane against the polar angle 
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is generally known as Normal or Gaussian law.  It can also be written 

log.[#fll]  = - ne! 

J(0) 
(4) 

where 

and 

J(0)  = -4 n 

mv 

2k0T 

In this equation, logeJ(8) is a linear function of Q , and the slope of 

the straight line is T\. Since Eq. (2) is valid in practice, it can he 

found from the flow equations in Part I of this report that 

XA  mv  = eV (5) 

Therefore, the r-component electron temperature can be expressed as 

ke. = «* 
(6) 

It may b.3 noted that the beam radius at the Z-plane is large com- 
pared with the radius of the anode orifice. For high velocity beams, 
this Z-plane must be at a great distance from the anode. In this 
experimental  set-up, 

Z  =  1.200 inch 

2r0  =  0.0135  inch 

t lien   Z/2r     =   89.      In   this   case   the   be~Ti   diameter   at   the  Z-plane   is o 
expected to be much larger than the diameter of the anode orifice. This 
justifies the consideration made in the calculation that the anode 
orifice can be regarded as a point source in this experimental arrange- 
ment. If the beam diameter at the Z-piane is not much larger than the 
diameter of the anode orifice, a correction has to be made for the 
finite  size   cf   the  anode   orifice. 
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3.  EXPERIMENTAL APPARATUS 

The diagram and the apparatus are shown in 3a and b. Eusenti&lly, 

the apparatus is a parallel plane diode (Fig. 1) which has cylindrical 

symmetry with respect to the z-axis. In this design, the anode is 

stationary and the cathode is movable. Anode, detector and a toroidal 

ring are all at the same potential V with respect to the cathode. A 

small orifice of 0.0135 in. diameter is provided at the center of the 

anode. The chamber behind the anole is almost closed and can be con- 

sidered as a field-free region. Embedded in the back wall of the 

chamber is a running slide on which there is another small orifics of 

0.0135 inch diameter. It is this orifice which acts as a movable 

opening on the back wall of the chamber. 

A great effort has been made to have a parallel electron flow in 

the diode. When the cathode-anode spacing is small compared to the 

radius of the cathode, the electron flow close to the z-axis can be 

considered as parallel to the z-axis. It may be noted that the beam 

forming electrode is of the Pierce type, which is helpful in maintaining 

a parallel electron flow when the cathode-anode spacing and the poten- 

tial difference V are increased. The potential on the beam forming 

electrode is so adjusted that the current to the toroidal ring is small 

or zero. The electron emitter is made heavier than the ordinary cathode 

sleeves to insure its flatness and to increase the heat capacity. An 

emission paste of half BaC03 and half Sr003 is used and the top of the 

emitter is electrophoretically coated with 4.4 mg/cm . The coated sur- 

face looks very homogeneous under the microscope. 

Electrons which have emerged from the first orifice and also get 

through the second orifice will then be collected by the detector. 

The disturbances caused by the anode orifice will be considered in 

Section 4. as aberrations. When the disturbance is small, the electrons 

emerging from the anode orifice actually constitute a sample of the 

electrons arriving at the anode plane. In Section 4, it will also be 

shovn that the flight, of the electrons in the chamber is affected very 

littie by the mutual repulsion force of the electrons. Therefore, the 

electrons having emerged from the anode orifice cs:i be considered as 

flying through the chamber with their initial velocities at the anode. 

As a result, the current density distribution on the back wall of 

the c smber is a direct consequence of the velocity distribution of 
• 
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electrons at the ancde. The detector current indicates the current 
density at that point on the back wail of the chamber, at which the 
orifice of the running slide is set. By pulling the running slide, one 
may obtain the current density on the back wall as a function of r, the 
radial distance from the z-axis. From this information the electron 
temperature  at  the anode  plane  is evaluated. 

Since the anode is supposed to collect all electrons which arrive 
at the anode without disturbing the electron flow, the electron flow in 
the various cathode-anode spacings can be considered the same as long as 
the same anode current is maintained by adjusting the anode voltage. 

When the same anode current is maintained, the anode plane can be placed 
at any distance from the cathode surface to determine the electron 
temperature at that plane. For one value of anode current, the electron 
temperature can then be determined as a function of the distance from 
the  cathode  surface. 

FIGURE A    .APPLICATION OF GAUSS- iHtuKtwi 10 A 

CIRCULAR APERTURE: 
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4.  ESTIMATION OF ABERRATIONS 

As described in the preceding section, the apparatus is designed 

for the purpose of approaching the ideal case of t. e experiment. How 

good an approximation is attained can be seen in the study oi the 

aberrations in this arrangement. It is conceivable that three kinds of 

aberrations would exist in the experiment. First., the presence of the 

anode orifice will cause an electron lens effect uu the emerging Learn; 

second, the emerging beam will undergo an expansion due to its space 

charge effect; third, the secondary electrons from the anode orifice 

will also give rise to a current-density distribution at the back wall 

of the anode chamber. Each of these effects will be estimated separately 

in the following three paragraphs. 

M-. I  Electron Lens Effect 

The estimation of the divergent action of the anode orifice is made 

as if there were no velocity spread in the electron flow. Consider a 

cylinder (Fig. 4), symmetric with respect to z-axis, of cross-section 

area ftro an<^ length li + 12, just long enough so that the electric 

fields across the ends of the cylinder are substantially uniform over 

the area.  Thus, Ly Gauss' Theorem, 

12 

2nr0  f      Er(z) dz = - rtr0°v£i ~ Ea) - 4~i2rc' di 
+ ls)ne 

-li 

or 

/   Er(z) dz = - ~  (Ea - E2) - 2rtr0(l1 + l,)ne (7) 
-li 2 

where n is the number density of electrons in the cylinder, E< and E2 

are the electric fields at the left and right ends of the cylinder, and 

Er is the radial component of the electric field across the mantel sur- 
face   of   the   cylinder. 

Since the axial velocity of the electrons can be regarded as 
constant in the cylinder, the edge electrons will gain a radial com- 
ponent   of   velocity equal   to 

*3ee  preceding page. 
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In view of Eq. (7), the gain of the radial component, of velocity is due 
to the additive result of two divergent actions one comes from the 
change of electric field caused by the anode orifice, the other comes 
from the presence of space charge. The first action will be treated as 

an   electron  lens   effect14;   the Second action   as  a space  charge  effect. 
To estimate  the electron  lens effect,   one must  obtain an expression 

for  the  radial   velocity.     From Eq.   (8) 

erovEi  - E2) 
(9) 

More explicitly, each electron entering the left end of the cylinder has 

the same velocity as given in Eq. (5) in the direction of the z-axis. 

Passing through the region of the cylinder, each electron will gain a 

radial component velocity as given in Eq. (9).  Then their ratio will 

be 

cr _ r0(Ei - E2) 
v "    4V 

where Ei, in a space charge limited diode, is 

E 4Y 
3D 

and E2,   in  the   anode  chamber,   is 

E2   =   0 

To describe the electron lens effect, we may best express the 

effect in terms of a polar angle 9i (at the center of the orifice) which 

the cxoss-fcsctional area of the beam at the back wall would subtend. In 

doing so, we have 
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9t am 
3D     Z (10) 

D In Fig. 6, this poiar angle Ga is plotted against —--.      It should be 
To 

noted that the electron path depends m<ly upon the shape of the poten- 

tial field snd not upon the magnitude of the potential. As long as the 

configuration is maintained, the change of the anode potential should 

not cause any change of the deflection angle. 

*T=2 Space Charge Effect 

Based on the analysis given by Spangenberg15, one can also estimate 

the beam spread due only to space charge effect. For the purpose of 

analysis, it is convenient to start at a point where the radial velocity 

of the electrons can be considered zero.  Assumed conditions are: 

a.  Electrons in the beam are distributed in a rotational symmetry 

with respect to the z-axis, 

L.  The axial velocity of the electrons in the beam remains the 

same in the consideration. 

The analysis was primarily developed for high velocity electron beams. 

If there were no velocity spread in the electron flow, the beam spread 

thus predicted for the case of low velocity electron beams should still 

be reasonably accurate. 

When the diode (Fig. 5) is space-charge-limited, the following 

relation exists: 

7i 
(2.) Z . r 
9  D 

Ax- 
i  (logeY> 

(11) 

wneve y r»<^*» •» t- i r»r» * nH y f 
To 

is its radius at the orifice Although Eq. (11) cannot be express*-^ in 

terms of elementary functions, it is clear that trie percentage incr^a^e 

in the beam radius depends only upon the ratic of Z and D. Since To and 

Z are known in this experiment; Eq. (11), for the convenience of indica- 

ting the functional relationship, can also be written 

Y  =   Y  (D/r0) 
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FIGURE 5 DIVERGENT ACTION OF A SINGLE APERTURE 

4U 

FIGURE   6     POLAR  ANGLES   AS   A  FUNCTION  OF   THE   RATIO  D/Rc 
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Putting  the  space  charge  effect  on   the  same  b'isis   for comparison, 
we have 

t»a  -   die   tan 
TnY 

In Fig. 6, this polar angle 92 is also plotted against D/r0- If the 
diode is in space-charge-limited operai-ion, the beam expansion due to 
the spece charge effect  i?  also independent of the anode  potential. 

From Eqs. (7), (8) and (11), the radial velocity that an electron 
would gain before reaching the back wall is the sum of the velocities 
due to the electron lens effect and those due to the sp ce charge effect. 
In Fig. 6, the sum of the polar angles, 6-L and 92, is also plotted 
against D/r0-     Because 

tan  0!   >  tan  92   £ tan   (9t   +  92),   {B1  +  92)   <  90° 

(Cj   +   02)   is  a  maximum  polar angle  estimated   for  the   beam expansion  iv 
this  experiment. 

1.3    Secondary Electron Effect 

In order to examine the effect of secondary electrons produced at 

the anode orifice, we shall calculate the current-density distribution 
at the back wall of the anode chamber due to the secondary electrons 
alone. In this calculation, the emitted secondaries are considered to 
enter  the   field-free  region with negligible mutual   interactions. 

Anode  Chamber 

FIGURE 7   DIAGRAM OF THE ANODE ORIFICE 
The  average   number  of flecvrons   ^er  sscond   th-t  '"ill   hit   the 
of the anode  orifice   (Fig.   7) is: 

Jp  -  n   (-5--) 2 ft i o t ^y 
* 
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Taking the yield factor to be unity, secondary electrons thus produced 

can be expressed as: 

eV 

t^ 

Yo 
Io (12) 

In the work of secondary electron emission, it has been reasonably 

accepted that the angular distribution of secondary electrons follows 

the cosine law, independent of the angle of incidence of the primary 

electrons. In other words, the number of secondaries emitted per unit 

solid angle is greatest in the direction normal to the emitting surface 

and decreases with increasing angle of emergence 9 as cos 9. Consider- 

ing the secondary electron er issiou per unit area of a plane surface at 

X or z' 

z 0( y" 

y or x 

FIGURE 8 SECONDARY ELECTRON EMISSION FROM AN ORIFICF 

the origin (Fig. 8) one can write 

His. 
dn; h ' cos 9' 

in the orimed coordinates, or 

cu 
-?• = h cos 9 
dW (13) 
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in the unprimed coordinates, where is is the secondary electron current 

per unit area of emitting surface, H is the solid angle which P subtends 

at the origin, and h is a proportional constant. 

To describe the secondary electron emission from the inner wall of 

an orifice, we consider that the current at P is the sum of the contri- 

butions by a silia 11 plane Surface in one revolution with respect to the 

axis of the orifice. This is equivalent to the case where the emitting 

surface stays stationary but P is revolving around the Z-axis. Then the 

current at P would be the same as the current to the ring (generated by 

F in this manner) from the small plane surface at the origin. Thus, Eq. 

(13) is written: 

d*I. 

Rsd9d* 
sin 9 cos T 

then 

R9c 
- h sin  6 / 

n/2 
cos $ d $ 

or 

• 

dl. 
= 2h 

n2 in n uu 

zn  sin 

This describes the angle dependence of the secondary electron emission 

per unit area of a cylindrical surface at the origin. 

Now, the secondary electron emission of an orifice can be expressed 

ai, 

dn H sin B (14) 

where   Ig   is   the   secondary   electron  emission   of  an  orifice,   and   K  is   a 
proportional  constant.     By normalizing the expression,   one   finds  that 

H   = •>!< 

oari 
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In deriving Eq. (14). it is assumed that tw << r0 
<<: R- Let Js be the 

current density at the back wall cf the anode chamber due to the second- 

ary electrons alone, then 

JS(
Q) " 

JT ( a\ 

ZKT d r 

From EG. (14), we have 

since 

then 

d-*s   3/  T     3 

--f = 34L sin 
d9     s 

de = cos   e 
dr    7 

3T 
Js(9) = -^ sin 0 cos ! 

(15) 

i 

This gives the current density at the back wall of the anode chamber as 

a function of the polar angle at the center of the anode orifice, if 

only secondary electron emission processes are considered. In Fig. 9, 

the value of sin  9 cos  6 is plotted against 9. 

In order to see the effect of the secondary electrons in our 

measurements of current density distribution at the Z-piane, Eq. (15) 

can be written as 

,        f x, 1 
Js<e>   = — < ^ <">    sin29cos39V 

S nZ2    l8r«    1 I 
v. J 

or 

I 

m 

s 

J££9) 
JvO) 

% 
-•lt- (-)     sin*9cos-"9 
8rQn   n 

in the light of Eq. (12).  In this experiment, for example, 

-W = L 
ro  3 
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and 

26.6 

then 

J«(e) 
J(0) 

10" 

This ratio is very small as compared with that in Eq. (4). It will be 
seen that the ratio, J(9)/J(0), encountered in the measurements, is 

always greater than 10- . Hence, the secondary electron effect is 
entirely  negligible  in  this  experiment. 

4.4 Conclusion 

In the study of this arrangement, estimations of the aberrations 

have been made for each of these effects. It is rather fortunate that 

the beam expansion predicted from the existing electron temperature 

alone is much larger than all the effects arising from the aberrations. 

This will also be seen in the next section where the experimental re- 

sults are presented. Since the current-density distribution at the back 

wall of the anode chamber is predominantly due to the electron tempera- 

ture, the velocity spread of the emerging electrons can readiiy be 

expressed in. terms of an electron temperature. 

4.5 Experimental Results 

Before we present the current-density measurements at the back wall 

of the anode chamber, it would be proper to assure that the assumptions 

made in the theoretic*! considerations are fulfilled. Particular atten- 

tion has been paid to the activation of the large surface cathode, and 

the proper performance of the diode has been carefully checked. Measure- 

ments of the space charge flow for different cathode-anode spacing^ have 

been carried out. The results are shown in Figs. 10 and 11. The 

straight lines in both figures represent the theoretical Child-Langmuir 

space-charge law in logarithmic coordinates; first, in the forrr 
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second,   in  the   form 

jAD'  = QVJ/ * 

where 

j^ is the current density in iia/cni 

V is the anode potential in volts, 

D is the cathode-anode spacing in cm, 

and Q is a constant, 2.335. 

The points in both figures represent the observed values reduced to 

the corresponding units. Tt may be noted that the micrometer drive has 

a zero reading of about 0.018 cm. This would cause the last two sets of 

points in Fig. 10 to deviate from a straight line, but the observed 

values indicate very strongly that the Child-Langmuir space-charge law 

is definitely applicable. Since in Sections 4.1 and 4.2, the Child- 

Langmuir law has been used in the deductions, it is important to verify 

that the diode operates properly under appropriate conditions. 

Having established the proper functioning of the diode with respect 

to its main characteristics, one may now proceed to the determination of 

the desired electron temperature. As was shown in Section 2 of this 

Part (E-qs. (4) and (6)), the electron temperature at a given point of 

interest is evaluated from the investigation of the current distribution 

on the back wall of the anode chamber.  The corresponding equations were 

loge   [f&l   =  -n92 (4) 

k0r    -   & (6) 

t 

r 
T\ 

where J(A)/.J(0) is the relative current density on the back wail of the 

anode chamber, 0 is the polar angle, r\ is the slope of Eq. (4), V is 
the  anode  potential   and  ©j   is   the   r-component  electron  temperature. 

In   order   to   obtain   the.   desired   data,    the   cathode   is   set   at   a 
definite   temperature;   with   the  cathode  micrometer  drive,   the  cathode   is 

71- 



set at 8 desired spacing; and a stable anode current is adjusted by 
arranging for an appropriate anode potential. The current distribution 
along the back wail of the anode chamber is then determined by measuring 
the current passing to the collector for different positions of the fine 
aperture on the running slide. With the given geometry of the anode 
chamber it is easy to express the position of the aperture on the 
running slide in polar angles 9 with respect to the anode orifice. To 
facilitate a comparison between the experimental data and the theoreti- 
cal expressions, Eqs. (4) ind (6), the measured values must be expressed 
in terms of the logarithm of the relative current density, J(9)/J(0), 
and  the  square of the  polar angle,   9  . 

A large set of measurements have been carried out and some of 
the typical results are shown in Fig. 12. The points in Fig 12 reprp- 

sent the measured values and show a ~c?d indication of constituting a 
straight line as required by Eq. (4). These results seem to indicate 
very strongly that the spread of the electron beam behind the anode 
orifice is caused by the radial velocity distribution of the electrons 
at the moment of entering the anode chamber, rather than by the dif- 
ferent aberrations as lens action of the anode orifice, space charge 

effect, and secondary emission. For, if there were no velocity spread 
in the flow, the beam cross-section at the back wall of the anode 

chamber would (a) subtend a polar angle less than (9t + 9?) at the 
center of the aaode orifice, and (b) be independent of the anode poten- 
tial applied. But nothing of that sort could be observed. First, the 
beam cross-section at the back wall of the anode chamber subtends by a 
far greater polar angle than (ft- + 92) at the center of the anode 
orifice. Second, the beam expansion has a strong dependence on the 
anode potential. This makes the velocity spread of the electrons the 
most important factor in accounting for the beam expansion, -,nd confirms 
the  estimated  small   values  of  those  aberrations   as  given  in  Section  4. 

It was mentioned in Section 3 that in spite of different spacings 
between cathode and anode, trie same regions of the electron flow may be 
considered as having the same characteristics, provided the cathode 
temperature and the current density in the diode 'ire the same. There- 
fore, this method allows meas-,uremeiil of the electron temperature at any 
arbitrary point within a parallel plane flow which is defined by just 
two   parameters,   namely,   cathode   temperature   and   current  density.        In 
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order to obtain the desired electron temperature at a given point of 

interest along the iiow which is characterized by its cathode tempera- 

ture and its current density, one has to place the anode plane at the 

point of interest and determine the electron temperature by observing 

the current distribution on the Lack, wall of the anode chamber as 

described above. Varying the cathode-anode spacing i.r.d adjusting the 

anode potential such that the anode current remains constant gives a 

complete description of the electron temperature as a function of the 

distance from the cathode. It may be noted that the so determined 

electron temperature at each point of interest is an evaluation of a set 

of data, obtained by measuring the current distribution at the back wall 

of the anode chamber for the point in question, as described above. 

A set of experiments was carried out to establish the relationship 

between the electron temperature and the distance from the cathode sur- 

face for a given cathode temperature and anode current. The results of 

these experiments for a constant cathode temperature of 1275°K, and for 

different current densities in the flow are represented in Tig. 13. One 

interesting fact may be immediately noted, namely, the decrease of the 

electron temperature with the increase of the distance from the cathode 

surface. This decrease of the temperature can easily he accounted for 

if one remembers that in the theoretical part of this report, a decrease 

of the temperature with increasing distance from the cathode surface was 

predicted for the isotropic flow where the three temperature components 

arc equal to each other.  The corresponding equation reads: 

Br - v_2/s (1.44) 

Although this equation establishes only a correlation between the elec 
tron temperature and the mean velocity of the electron stream at the 
point of consideration, it is easy to convert the expression, with 
the aid of the Child-Langwuir equation, into a temperature-distance 
relation In Appendix II of Part I this relationship is derived and ac- 
cording to Eq. 2, Part II, one obtains for the isotropic flow the desired 
conflation between the electron temperature and the distance from the 
cathode  surface, 
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Since the data in Fig. 13 are represented in log-log coordinates, 
any exponential dependency would present itself as a straight line, the 
slope of which would correspond to the exponent of the independent, 
variable (see also Part I, App. II). For comparison, a -4/9 slope 
representing the isotropic case is indicated in the same graph. Al- 
though for i.irge distances there is an indication that the electron 
-emperature may follow a -4/9 power law, for smaller distances this is 

obviously not   the case.     At  this point no  account  can be given   for  the 
;pected dependency. Only a much more extensive 

experimental investigation of the region close to the cathode surface 
can provide sufficient data to allow further theoretical considerations. 
They will  be  presented  in a   later report. 

It may be interesting to compare the experimental results obtained 
in this study with the well known fact that the electron temperature 

should increase with increasing plate voltage. Since in the usual 
experimental arrangement the cat bode-anode spacing is kept constant, the 

above statement is equivalent to the statement that the electron temper- 
ature should increase with increasing current density. Figure 14 is 
obtained by arranging the experimental data such that the electron 
temperature is plotted against the current density with the distance as 
parameter. One may note that the electron temperature tends to reach an 
asymptotic  value   for high  current  densities. 

One of the most startling findings in the experimental results of 
this study is the extraordinarily high electron temperature as compared 
to the cathode temperature. To make this point particularly clear, in 
Fig. 15 the electron temperature at a constant distance of 0.13 cm is 
plotted against the cathode temperature for two different plate voltages, 
50 and 100 volts. Although the cathode temperature does not exceed 
1300°K. the temperature of the electron gas at the anode orifice assumes 
values of the order of 10,000 to 10,000°K. Before giving an explanation 
of this phenomenon we should note that an agreement ci the temperature 
of the electron gas with the temperature of the cathode is usually found 
by the retarding field method at low cathode temperatures. In the 
evaluation of the data obtained from the retarding field measurements, 
an important assumption is made namely, that the space charge in the 
diode is negligible. Due to this assumption the range of these meas- 
urements   is   usually   limited   to   low  cathode   temperatures.      In   fact,   at 
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high cathode temperatures the experimental curves do not show the 
expected abrupt bend, hence the evaluation of the electron temperature 

from these curves seems rather doubtful. Since the electron temperature 
from high temperature cathode has not beer, experimentally determined, 
the above results do not contradict the agreement fovr'.c at the low 
cathode   temperatures. 

Before concluding the experimental part, an attempt will be made to 
explain the extremely high temperature of the electron gas close to 
the cathode. This explanation will rest essentially on the experimental 
evidence that the temperature of the electron gas decreases sharply if 
the temperature of the cathode is lowered, as indicated in Fig. 15. 
Altho»'gh the present apparatus is not sensitive enough to measure the 
electron temperature for very lo*# cathode temperatures, it seems reason- 
able to believe that the temperature of the electron gas will approxi- 
mate the cathode temperature in the lower regions This assumption may 
be well supported by a closer examination of the emission mechanism of 
oxide-coated   cathodes. 

It is known that the oxide coating prepared ir. the conventional 

processes has a porous structure, the porosity ranging from 65% to about 
85%**. Experimental evidence,16 that the outer layers of the oxide 
coating are chiefly responsible for the electron emission, was found. 

Figure 16 may represent a schematic diagram of such an oxide-coated 
surface, This structure suggests that at low temperature the surface 

grains may possibly be responsible for the entire emission. The re- 
placement of the electrons lost by the surface grains through the 
process of emission will be supplied by electrons coming from the deeper 
layers through a pricess of conduction ill the oxide coating. Since the 
electron emission in this case may be considered as originating from the 
grains at the surface, the velocity spread or the temperature of the 

emitted electrons, would correspond to the thermal temperature of the 
oxide   coating  as   in   the   case   of electron  emission   from  pure  metals 

Experiments1' have shown that conduction through the oxide coating 
is due to two mechanisms acting in parallel- the electronic conduction 
through the grains, predominating at low temperatures and the conduc- 
tion through the electron gas in the pores between the grains which is 
preponderant at high temperatures Since at higher temperatures the 
conductivity of the coating will decrease, on the other hand the emis- 
sion  will   rapidly   increase  with   increased   temperature      it   is   clear   that 
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at elevated temperatures the conduction will lag behind the emission. 
With this picture in mind it is not difficult to see that at high 
temperatures a part of the Omission may come from the electron gas in 
the pores between the grains. In the process of emerging from the 
narrow channels between the grains, the electrons will probably suffer a 
series of collisions with the heavy grain particles and may assume tem- 
peratures which by far exceed the temperature of the grain particles.l° 

It is interesting to note that the above explanation can also 
account for the fact that the electron temperature will increase if a 
higher anode potential is applied. In a recent paper19 by Loosjes, Vink 
and Jansen, it was found that under pulsed operation the velocity spread 
of the emitted electrons from oxide coating would often amount to 

hundreds   of  electron   volts. 

Oxide Coating Vacuum 

FIGURE 16   ILLUSTRATIVE DIAGRAM OF THE OXiDE COATING 
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